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Abstract
After a systematic introduction of some formulae for the energy radiated by
localized electric charges and currents distributions, one considers the multipole
radiation and the reduction of the multipole tensors to the symmetric traceless
ones. A general formula for the total power radiated by a confined system
of charges is given. Although one uses Cartesian tensor components in the
explicit calculations, the final results are given in a consistent tensorial form.

PACS numbers: 03.50.De, 41.20.−q

1. Introduction

In the calculation of the energy radiated at large distances by a localized electric-charged
system, it is not necessary to know the exact expressions of the electromagnetic fields E and
B or of the potentials A and �. One may avoid the exact calculation, sometimes relatively
complicated, in a simple way based on a formula for the power radiated by a charged system
described by the charge ρ and current j densities with supports included in a finite domain
D [1]:

dP

d�
(ν, t) = r2

µ0c

[
ν × ∂

∂t
Arad(r, t)

]2

. (1)

Here the origin O of the coordinates is chosen in the domain D, ν = r/r, dP/d� is related
to the flow of the energy detected in the observation point r at large distance r compared with
the dimensions of the given charged system. The vector Arad is obtained from the retarded
potential

A(r, t) = µ0

4π

∫
D

1

R
j

(
r′, t − R

c

)
d3x ′

0305-4470/04/164671+14$30.00 © 2004 IOP Publishing Ltd Printed in the UK 4671

http://stacks.iop.org/ja/37/4671


4672 C Vrejoiu and D Nicmoruş

with R = r − r′, by retaining only the dominant terms at large distances. A first approximation
for this vector is obtained by retaining only the dominant term 1/r from the series expansion
of 1/R,

1

R
= 1

r
+ r′ ·

(
∇′ 1

R

)
r′=0

+ · · · = 1

r
− r′ · ∇ 1

r
+ · · · = 1

r
+

r′ · r

r3
+ · · · = 1

r
+ O(1/r2)

with a corresponding definition

Ãrad(r, t) = µ0

4π

1

r

∫
D

j

(
r′, t − R

c

)
d3x ′. (2)

Supposing r � λ, where λ is an arbitrary wavelength from the radiation spectrum, such
that the observation point is in the wave region, and retaining in equation (1) only the terms
having nonzero limits for r → ∞, one obtains an approximate expression related to the energy
flow observed in the point r and moment t. Rigorously, this is that part of the energy flowing
in the neighbourhood of the observation point which contributes to the radiated energy. In the
following we assume to work in this wave region.

Equation (1) is justified in [1] using the supposed plane wave behaviour of the radiated
field but also in [1] a rigorous proof is suggested for this. Indeed, this may be done by
considering consistently only the terms from E and B contributing to the radiation [2, 3].

As a simple example of application of equation (1), we remember that one usually derives
the angular distribution of the power radiated by a point electric charge q using the results
for the fields E and B obtained from the Liénard–Wiechert potentials and retaining from the
corresponding expressions only the terms contributing to the radiation [1, 2, 4]. It is very
easy to calculate this distribution using in this case the formula (1), only the knowledge of the
potential A being necessary [3].

In this paper we present a general procedure for expressing the multipole expansion of
the power radiated by a localized system of charges. In section 2, the basic formulae for the
multipole expansion of the radiation field are given. The vector potential is represented only
by the symmetric and traceless multipole tensors. One uses, for this end, a reduction technique
done in [7] but, this time, applying some results from [8] for giving general explicit results. In
section 3, we present a general formula for the total power radiated by a confined system of
charges. Some particular results are given, some of them being compared with similar results
existing in the physics literature.

2. Multipolar expansion of Arad and reduction of the multipole tensors

Let us the Taylor series expansion of a function f (R),

f (R) =
∞∑

n=0

(−1)n

n!
x ′

i1
· · · x ′

in
∂i1...inf (r) =

∞∑
n=0

(−1)n

n!
r′n‖∇nf (r) (3)

where

∂i1...in = ∂

∂xi1

· · · ∂

∂xin

and an is the n-fold tensorial product (a⊗· · ·⊗a)i1...in = ai1 · · · ain . Denoting by T(n) a tensor
of rank n, A(n)‖B(m) is an |n − m| th-rank tensor with the components

(A(n)‖B(m))i1...i|n−m| =


Ai1...in−mj1...jm
Bj1...jm

n > m

Aj1...jn
Bj1...jn

n = m

Aj1...jn
Bj1...jni1...im−n

n < m.
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The series expansion of the integrand from equation (2), by retaining only the 1/r terms
contributing to the radiation, finally leads to the multipole expansion of the radiation field:

Arad(r, t) = µ0

4πr

{ ∞∑
n=1

1

n!cn

[
νn−1

∣∣∣∣∣∣∣∣ dn

dtn
M(n)(t0)

]
× ν +

∞∑
n=1

1

n!cn−1
νn−1

∣∣∣∣∣∣∣∣ dn

dtn
P(n)(t0)

}
.

(4)

Here, P(n) and M(n) are the electric and magnetic multipole tensors

P(n)(t) =
∫
D

rnρ(r, t) d3x (5)

and

M(n)(t) = n

n + 1

∫
D

rn × j(r, t) d3x (6)

where the ‘vectorial product’ T(n) × a is the tensor of rank n with the components

(T(n) × a)i1···in = εinij Ti1···in−1iaj

and, particularly,

(bn × a)i1···in = bi1 · · · bin−1(b × a)in .

The result represented by equation (4) is obtained in [2, 7] from the series expansion of
the potential A(r, t). In appendix A the series expansion (4) is justified by a straightforward
expansion of Ã(r, t).

It is possible to express Arad by the reduced multipole tensors (total symmetric and
traceless tensors) by applying a procedure given in [6, 7]. The special feature of this procedure
consists in the possibility of representing the potentials by the series expansions obtained by
simple substitutions of the multipole tensors P(n) and M(n), given by equations (5) and (6),
by symmetric and traceless tensors P̃

(n)
and M̃

(n)
respectively. One of the advantages of this

technique will be obvious in the calculation of the total power radiated by a localized system
of charges.

The transformations implied by the reduction are defined such that the electromagnetic
potentials A and � are modified only by gauge transformations implying a specific feature of
the dynamic case: the redefinitions of the multipole tensors in the lower k < n orders induced
by the reduction of tensors in a given order n. In the present paper this procedure being applied
to the radiation field, obviously, only the vector potential is to be considered.

The results from [7] will be applied to the radiated field in a more simple manner because
of the specific feature of this problem. The reduction of multipole tensors beginning with a
given order n is achieved by the following steps.

(1) The reduction of the magnetic nth-rank tensor M(n), given by equation (6), to a
symmetric tensor M(sym). Since the magnetic tensor M(n) is symmetric only in the first n − 1
indices, the reduction to a symmetric one may be performed by the transformation [6]

Mi1...in → M(sym)i1...in = 1

n

[
Mi1...in + Mini2...in−1i1 + · · · + Mi1...inin−1

]
= Mi1...in − 1

n

n−1∑
λ=1

[
M(λ)

i1...in−1iλin
− M(λ)

i1...in−1iniλ

]
= Mi1...in − 1

n

n−1∑
λ=1

εiλinqN(λ)
i1...in−1q

(7)
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where we use the notations

Ni1...in−1 = εin−1psMi1...in−2ps f
(λ)
i1...in

= fi1...iλ−1iλ+1...in .

If M(n) is given by the original definition (6), the (n − 1) th-rank tensor N(n−1) is given by

Ni1...in−1 = n

n + 1

∫
D

ξi1 · · · ξin−2 [ξ × (ξ × j)]in−1 d3ξ.

We write explicitly the modification of the potential Arad induced by the substitution (7):

4πr

µ0
Arad → 4πr

µ0
Arad − ei

n!ncn
εiklνlνi1 · · · νin−1

n−1∑
λ=1

εiλkq

dn

dtn
N(λ)

i1···in−1q
(t0)

= 4πr

µ0
Arad +

n − 1

n!ncn

[
νn−2

∣∣∣∣∣∣∣∣ dn

dtn
N(n−1)(t0)

]
+

4πr

µ0
ψ(r, t)ν (8)

where

ψ(r, t) = − µ0

4πr

n − 1

n!ncn

[
νn−1

∣∣∣∣∣∣∣∣ dn

dtn
N(n−1)(t0)

]
and, corresponding to a gauge transformation of the potential, does not contribute to the fields
Erad and Brad.

(2) The extra-gauge alteration of the vector potential by the transformation (8) may be set
off by the transformation of the electric multipole tensor P(n−1):

P(n−1) → P′(n−1) = P(n−1) − n − 1

c2n2

d

dt
N(n−1) (9)

such that the final transformation of the potential is the gauge transformation

Arad → Arad + ψν.

(3) After the reduction of the magnetic tensor M(n) to a symmetric one, we have to
perform the reduction to a symmetric and traceless tensor M̃

(n)
. This reduction is achieved by

the transformation [6]

M(sym)i1...in → M̃i1...in = M(sym)i1...in −
∑
D(i)

δi1i2�i3...in (10)

where Λ(n−2) is a symmetric tensor and the sum over D(i) is the sum over all permutations of
the symbols i1, . . . , in which give distinct terms. Applequist [8] has given an explicit formula
for expressing the components of the symmetric traceless tensor M̃

(n)
in terms of the traces of

the tensor M(n), (the detracer theorem, [8], equation (5.1)):

M̃i1···in = M(sym)i1...in −
[n/2]∑
m=1

(−1)m−1(2n − 1 − 2m)!!

(2n − 1)!!

∑
D(i)

δi1i2 · · · δi2m−1i2m
M(n:m)

(sym)i2m+1...in
(11)

where [n/2] denotes the integer part of n/2 and M(n:m)

(sym)i2m+1...in
are the components of the

(n − 2m) th-rank tensor obtained from M(sym) by the contractions of m pairs of symbols i.
Using equation (11) we may give explicitly the components of the tensor Λ(n−2):

�i3...in =
[n/2]∑
m=1

(−1)m−1(2n − 1 − 2m)!!

(2n − 1)!! m

∑
D(i)

δi3i4 · · · δi2m−1i2m
M

(n:m)

(sym)i2m+1...in
. (12)

If in equations (7) and (10) M(n) is the original one defined by equation (6), then, as is shown
in [6, 2], denoting the resulting symmetric traceless tensor M̃

(n)
by M(n), we have

Mi1...in (t) = (−1)n−1

(n + 1)(2n − 1)!!

n∑
λ=1

∫
D

r2n+1[ j(r, t) × ∇)]iλ∂
(λ)
i1...in

1

r
d3x. (13)
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In terms of the tensor Λ, the modification of Arad induced by the substitutions (7), (9)
and (10) is obtained by a straightforward calculation

4πr

µ0
Arad → 4πr

µ0
Arad +

4πr

µ0
ψν − ei

n!cn
εiklνlνi1 · · · νin−1

∑
D(i)

δi1i2

dn

dtn
�i3...in−1k

= 4πr

µ0
Arad +

4πr

µ0
ψν − ei

n − 1

n!cn
εiklνlνkνi1 · · · νin−2

dn

dtn
�i1...in−2

− ei

(n − 1)(n − 2)

2n!cn
εiklνlνi1 · · · νin−3

dn

dtn
�i1...in−3k

= 4πr

µ0
Arad +

4πr

µ0
ψν + ei

(n − 1)(n − 2)

2n!cn
εilkνl

[
νn−3

∣∣∣∣∣∣∣∣ dn

dtn
Λ(n−2)

]
k

.

So, the transformation of the potential may be written as

4πr

µ0
Arad → 4πr

µ0
Arad +

4πr

µ0
ψν +

(n − 1)(n − 2)

2n!cn
ν ×

[
νn−3

∣∣∣∣∣∣∣∣ dn

dtn
Λ(n−2)

]
.

(4) It is a simple matter to see that the last extra-gauge term may be set off by the
transformation

M(n−2) → M′(n−2) = M(n−2) +
n − 2

2c2n

d2

dt2
Λ(n−2). (14)

(5) This step consists in the reduction of the symmetric nth-order electric multipole tensor
P(n) to a symmetric and traceless one by a transformation of the type (10):

Pi1...in → P̃i1...in = Pi1...in −
∑
D(i)

δi1i2i3...in (15)

where the symmetric tensor Π(n−2) is defined in terms of the traces of the tensor P(n) by a
relation similar to equation (12).

If in equation (15) P(n) is the original one given by equation (5) then the resulting
symmetric traceless tensor P̃

(n)
is denoted by P(n) and we have [9]

Pi1...in = (−1)n

(2n − 1)!!

∫
D

ρ(r, t)r2n+1∇n 1

r
d3x. (16)

The components of the kth-rank tensor ∇k(1/r) in equations (13) and (16) are spherical
harmonics of degree −k − 1 [8–10].

The resulting transformation of Arad is

4πr

µ0
Arad → 4πr

µ0
Arad +

4πr

µ0
ψν − ei

n!cn−1
νi1 · · · νin−1

dn

dtn

∑
D(i)

δi1i2i3...in−1i .

In this equation, we have (n− 1) terms with δik, k = 1, . . . , n− 1 and (n− 1)(n− 2)/2 terms
with δij ik , j, k = 1, 2, . . . , n − 1 so that

4πr

µ0
Arad → 4πr

µ0
Arad +

4πr

µ0
ψν − n − 1

n!cn−1
ννi2 · · · νin−1

dn

dtn
i2...in−1

− (n − 1)(n − 2)

2n!cn−1
νi3 · · · νin−1

dn

dtn
i3...in−1i

that is

4πr

µ0
Arad → 4πr

µ0
Arad +

4πr

µ0
(ψ + ψ ′)ν − (n − 1)(n − 2)

2n!cn−1

[
νn−3

∣∣∣∣∣∣∣∣ dn

dtn
Π(n−2)

]
(17)
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where

ψ ′ = − µ0

4πr

(n − 1)

n!cn−1
νn−2

∣∣∣∣∣∣∣∣ dn

dtn
Π(n−2).

(6) The alteration of the potential represented by the last term in equation (17) is set off
by the transformation

P(n−2) → P(n−2) +
n − 2

2nc2

d2

dt2
Π(n−2) (18)

which preserves the symmetry properties of P(n−2).
By this last transformation (18), the reduction of the multipole tensors in the given nth

order is achieved. Now, to carry out this procedure to the (n− 1)th order, we must realize that
in this order some tensors have been already modified in order to set off the alterations of the
electromagnetic field by the reductions in the nth order. So, the transformation (9) alters the
symmetry properties of the (n − 1)th-order electric multipole tensor because

δP(n−1) = −n − 1

c2n2

d

dt
N(n−1)(t0)

is symmetric only in the first n−2 indices. To restore the full symmetry of the (n−1)th-order
electric moment, we perform the reduction of N(n−1) to a symmetric tensor by the
transformation

Ni1...in−1 → Ni1...in−1 → Ni1...in−1 − 1

n − 1

(n−2)∑
λ=1

[
Ni1...in−1 N(λ)

i1...in−1iλ

]
. (19)

By introducing the tensor N (n−2) with the components

Ni1...in−2 = εin−2psNi1...in−3ps

the transformation (19) may be written as

Ni1...in−1 → Ni1...in−1 − 1

n − 1

(n−2)∑
λ=1

εiλin−1qN
(λ)
i1...in−2q

and

P′
i1...in−1

= Pi1...in−1 − n − 1

c2n2

d

dt
Ni1...in−1

→ Pi1...in−1 − n − 1

c2n2

d

dt
Ni1...in−1 +

1

c2n2

(n−2)∑
λ=1

εiλin−1q

d

dt
N (λ)

i1...in−2q
. (20)

If M(n) is given by the original definition (6), then we can write

Ni1...in−2 = − n

n + 1

∫
D

ξ 2ξi1 · · · ξin−3 (ξ × j)in−2
d3ξ.

The alteration of the vector potential Arad by the transformation (20) is given by

Arad → Arad − n − 2

n!ncn
ν ×

[
νn−3 × d

dt
N (n−2)(t0)

]
.

This alteration of Arad is set off by the transformation of M′(n−2), given by equation (14),

M′(n−2) → M′′(n−2) = M′(n−2) − n − 2

n2(n − 1)c2

d2

dt2
N (n−2). (21)
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By this transformation the symmetry properties of M′(n−2) are preserved. Particularly, by
reducing the (n − 2) th-rank multipole tensors, in the case of M′′(n−2), we have to obtain only
the symmetric part of the supplementary term from equation (14).

If we begin the reduction from a given order n, then the results of the reductions of P(n)

and M(n) are the tensors P (n) and M(n) given by equations (16) and (13) but for k < n the
kth-order reduced multipole tensors may differ from P (k) and M(k) by terms induced by
the procedure of the reductions from the previous steps. These last terms give contributions
to the potentials and fields expressed by toroidal moments and mean radii of various orders.

We give here some simple examples of reductions, and we will see how naturally the
toroidal moments appear as a result of such an approach.

We consider in the following the reduction of the magnetic and electric multipole tensors
beginning from the µth and εth orders, respectively (generally, considering multipole’s
contributions of the same orders, µ = ε − 1).

For (µ, ε) = (1, 2), we have M(1) → M̃
(1) = M(1), P(1) → P̃

(1) = P(1), P(2) → P̃
(2) =

P(2). These transformations produce only a gauge transformation of Arad.
We give in appendix a scheme of the reductions for (µ, ε) = (4, 5) from which we can

obtain also the cases (µ, ε) = (2, 3) and (µ, ε) = (3, 4). In [3] is also given the scheme of
reductions corresponding to the case (µ, ε) = (5, 6). For arbitrary µ and ε, we think it is
possible to find a general rule or, at least, to elaborate symbolic computer programs.

In the case (µ, ε) = (2, 3),

M(k) −→ M̃
(k) = M(k) k = 1, 2 P(1) → P̃

(1) = P(1) − 1

4c2
Ṅ

(1)
+

1

6c2
̈(1)

P(k) −→ P̃
(k) = P(k) k = 2, 3.

Here, N(1) and (1) are given by equations (B.3) and (B.8) for Nqqi = 0, Pqqppi = 0, that is
eliminating the contributions from the orders nµ > 2 of the magnetic multipole tensors and
from the orders nε > 3 for the electric ones.

Taking into account the continuity equation verified by ρ and j, we obtain

P̃i = Pi − 1

c2
Ṫi Ti = 1

10

∫
D

[(ξ · j)ξi − 2ξ 2ji] d3ξ (22)

where Ti are the Cartesian components of the toroid dipole tensor [11–13].
In the case (µ, ε) = (3, 4), we have the changes

M(1) → M̃
(1) = M(1) +

1

c2
�̈(1) M(k) → M̃

(k) = M(k) k = 2, 3

P(1) → P̃
(1) = P(1) − 1

4c2
Ṅ

(1)
+

1

6c2
̈(1)

P(2) → P̃
(2) = P(2) − 2

9c2
˙̃N

(2)
+

1

4c2
̈(2) P(k) → P̃

(k) = P(k) k = 3, 4

where Ñij , �i, Nij and ij are given by equations (B.2), (B.3), (B.5), (B.6) and (B.9) by
eliminating the contributions from the orders nµ > 3 and nε > 4. In this case, one obtains the
contribution of the toroidal quadrupole tensor T(2) having the Cartesian components [11–14]:

Tik = 1

42

∫
D

[4(ξ · j)ξiξk − 5ξ 2(ξijk + ξkji) + 2ξ 2(ξ · j)δik] d3ξ

having, besides equation (22),

P̃ik = Pik − 1

c2
Ṫik
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and the dipolar magnetic moment modified by a mean-square current radius

M̃i = Mi +
1

c2

1

20

∫
D

ξ 2(ξ × j) d3ξ.

In the case (µ, ε) = (4, 5), we point out the result for P(3)

P̃
(3) = P(3) − 3

16c2
˙̃N

(3)

+
3

10c2
¨̃


(3)

: P̃ijk = Pijk − 1

c2
Ṫijk

with the toroidal moment

Tijk = 1

60

∫
D

ξ 4
∑

D(i,j,k)

δij jk + ξ 2 (ξ · j)
∑

D(i,j,k)

δij ξk

+ 5 (ξ · j) ξiξj ξk − 5ξ 2
∑

D(i,j,k)

ξiξj jk

 d3ξ.

Other explicit results in this case are given in [3].
These results show that one may obtain from the formula (4) the correct representation

of the electromagnetic field by the reduced multipole tensors, but introducing these tensors up
to a given order n, we obtain separate contributions from some electric toroidal moments and
mean 2n-power radii. This was pointed out firstly by Dubovik et al [11–13]. In the present
paper we point out that considering the contributions to the electromagnetic field of some
toroidal moments, one suppose the reduction of the multipole tensors up to a well-defined
maximal order n.

3. The total power radiated by a localized system of charges

Let us the total radiation power obtained by integrating equation (1):

Iµ,ε = 1

µ0c

∫ (
ν × ∂Arad

∂t

)2

µ,e

r2 d�(ν) (23)

considering only the contributions of the magnetic and electric multipoles up to the µth and
εth orders, respectively. Using equation (4) with the substitution P(k) −→ P̃

(k)
, k � ε and

M(l) −→ M̃
(l)

, l � µ we may write(
4πr

µ0

)2

(ν × Arad)
2
µ,e

=
µ∑

n=1

µ∑
m=1

1

n!m!cn+m

[(
νn−1

∣∣∣∣M̃(n)

,n

) · (
νm−1

∣∣∣∣M̃(m)

,m

) − (
νn

∣∣∣∣M̃(n)

,n

)(
νm

∣∣∣∣M̃(m)

,m

)]
+

ε∑
n=1

ε∑
m=1

1

n!m!cn+m−2

[(
νn−1

∣∣∣∣̃P(n)

,n

) · (
νm−1

∣∣∣∣̃P(m)

,m

) − (
νn

∣∣∣∣̃P(n)

,n

)(
νm

∣∣∣∣̃P(m)

,m

)]
+ 2

µ∑
n=1

ε∑
m=1

1

n!m!cn+m−1

{(
νn−1

∣∣∣∣M̃(n)

,n

) · [
ν × (

νm−1
∣∣∣∣̃P(m)

,m

)]}
(24)

where

T(n)
,k = dk

dt k
T(n).
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The calculation of the integrals in equation (23) is reduced to the calculation of〈
νi1 · · · νin

〉
ν
, n = 0, 1, . . . with

〈f (ν)〉ν = 1

4π

∫
f (ν) d�(ν) :〈

νi1 · · · νi2n+1

〉
ν

= 0
〈
νi1 · · · νi2n

〉
ν

= 1

(2n + 1)!!

∑
D(i)

δi1i2 · · · δi2n−1i2n
.

Let us the symmetric and traceless tensors A(n) and B(m) and the averaged contraction

〈(νk||A(n))||(νk′ ||B(m))〉ν = 〈
νi1 · · · νik νj1 · · · νjk′ Ai1...ik ik+1...inBj1...jk′ jk′+1...jm

〉
ν
.

This is non-zero only for the products of δipjq
with p = 1, . . . k, q = 1, . . . k′, and it is easy to

demonstrate the relation

〈(νk||A(n))||(νk′ ||B(m))〉ν = k!

(2k + 1)!!
[A(n)||B(m)]δk′k.

The terms of the last sum from equation (24) give contributions to the total radiated power of
the form 〈

νi1 · · · νin−1νj1 · · · νjm−1νp

〉
εinpqAi1...inBj1...jm−1q

but all the terms from the sum of δ-products representing the averaged products of ν contains
either δikp or δpjl

, k = 1, . . . , n − 1, l = 1, . . . , m − 1 such that, because of εinpq and of the
traceless character of A and B, the result is zero. Using these results in equations (23) and
(24), we obtain

Iµ,ε = 1

4πε0c3

[
µ∑

n=1

n + 1

nn!(2n + 1)!!

1

c2n

[
M̃

(n)

,n+1

∣∣∣∣M̃(n)

,n+1

]
+

ε∑
n=1

n + 1

nn!(2n + 1)!!

1

c2n−2

[̃
P

(n)

,n+1

∣∣∣∣̃P(n)

,n+1

]]
. (25)

For comparison with results existing in the literature [1, 11–13] we write here the results in
the following cases. The case (µ, ε) = (1, 2) is given in [1]

I1,2 = 1

4πε0c3

[
2

3
P̃

(1)

,2

∣∣∣∣∣∣∣∣̃P(1)

,2 +
1

20c2
P̃

(2)

,3

∣∣∣∣∣∣∣∣̃P(2)

,3 +
2

3c2
M̃

(1)

,2

∣∣∣∣∣∣∣∣M̃(1)

,2

]
= 1

4πε0c3

[
2

3
p̈2 +

2

3c2
m̈2 +

1

20c2
˙P̈ (2)

∣∣∣∣∣∣∣∣˙P̈(2)

]
. (26)

This result is justified by the invariance of the radiation field to the transformation P(2) → P(2).
In the case (µ, ε) = (2, 3) we obtain

I2,3 = 1

4πε0c3

[
2

3
P̃

(1)

,2

∣∣∣∣∣∣∣∣̃P(1)

,2 +
1

20c2
P̃

(2)

,3

∣∣∣∣∣∣∣∣̃P(2)

,3 +
2

945c4
P̃

(3)

,4

∣∣∣∣∣∣∣∣̃P(3)

,4

+
2

3c2
M̃

(1)

,2

∣∣∣∣∣∣∣∣M̃(1)

,2 +
1

20c4
M̃

(2)

,3

∣∣∣∣∣∣∣∣M̃(2)

,3

]
= 1

4πε0c3

[
2

3

∣∣∣∣p̈ − 1

c2
˙T̈

∣∣∣∣2

+
2

3c2
m̈2 +

1

20c2
˙P̈ (2)

∣∣∣∣∣∣∣∣˙P̈(2) +
1

20c4
˙̈M(2)

∣∣∣∣∣∣∣∣ ˙̈M(2) +
2

945c4
P(3)

,4

∣∣∣∣∣∣∣∣P(3)
,4

]
. (27)
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In the case (µ, ε) = (3, 4),

I3,4 = 1

4πε0c3

[
2

3
P̃

(1)

,2

∣∣∣∣∣∣∣∣̃P(1)

,2 +
1

20c2
P̃

(2)

,3

∣∣∣∣∣∣∣∣̃P(2)

,3 +
2

945c4
P̃

(3)

,4

∣∣∣∣∣∣∣∣̃P(3)

,4 +
1

18144c6
P̃

(4)

,5

∣∣∣∣∣∣∣∣̃P(4)

,5

+
2

3c2
M̃

(1)

,2

∣∣∣∣∣∣∣∣M̃(1)

,2 +
1

20c4
M̃

(2)

,3

∣∣∣∣∣∣∣∣M̃(2)

,3 +
2

945c4
M̃

(3)

,4

∣∣∣∣∣∣∣∣M̃(3)

,4

]

= 1

4πε0c3

[
2

3

(
p̈ − 1

c2
˙̈T

)2

+
2

3c2

(
m̈ +

1

c2
�,4

)2

+
1

20c2

(
˙P̈(2) − 1

c2
T(2)

,4

) ∣∣∣∣∣∣∣∣ (˙P̈(2) − 1

c2
T(2)

,4

)
+

1

20c4
˙M̈(2)

∣∣∣∣∣∣∣∣ ˙M̈(2)

+
2

945c4

(
P(3)

,4

∣∣∣∣∣∣∣∣P(3)
,4 +

1

c2
M(3)

,4

∣∣∣∣∣∣∣∣M(3)
,4

)
+

1

18144c6
P(4)

,5

∣∣∣∣∣∣∣∣P(4)

,5

]
. (28)

4. Conclusion

In the physics literature on multipole expansions, the tensorial notation was abandoned
practically in favour of the spherical functions [9]. On the other hand, in many applications,
it is relatively easy to apply the tensor formalism as was shown, for example, in [9]. In
the present paper, calculation of the total power radiated by a confined system of charges is
also such an example. Starting from equations written with tensorial notations, it is easy to
materialize the corresponding expressions in the Cartesian or spherical components because
in the literature explicit formulae are derived which relate Cartesian and spherical components
of the irreducible Cartesian tensors [15, 16].

Appendix A. Multipolar expansion of Arad

By introducing the expansion (3) into equation (2), we obtain

Ãrad(r, t) = µ0

4πr
ei

∞∑
n=0

(−1)n

n!
∂i1...in

∫
D

x ′
i1

· · · x ′
in
ji(r

′, t0) d3x ′ = µ0

4πr
ei

∞∑
n=0

(−1)n

n!
a

(n)
i

(A.1)

where t0 = t − r/c and,

a
(n)
i = ∂i1...in

∫
D

x ′
i1

· · · x ′
in
ji

(
r′, t − r

c

)
d3x ′ (A.2)

and ei are the orthogonal unit vectors along the axes.
In the following, we use a generalization to the dynamic case of a procedure given in

[4, 5] in the magnetostatic case. Let the identity

∇[xij(r, t)] = ji(r, t) + xi∇j(r, t).

Considering the continuity equation ∇j + ∂ρ/∂t = 0, we may write

ji(r, t) = ∇[xij(r, t)] + xi

∂

∂t
ρ(r, t)
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and using this last equation in equation (A.2), we get

a
(n)
i = −∂i1...in

∫
D

x ′
ij(r′, t0) · ∇′(x ′

i1
· · · x ′

in
) d3x ′ + ∂i1...in

∫
D

x ′
i1

· · · x ′
in
x ′

i

∂

∂t
ρ(r′, t0) d3x ′

considering a null surface term because j = 0 on ∂D. Because of the symmetry of the
derivative tensor and introducing the nth-order electric multipole tensor, we may write

a
(n)
i = −n∂i1...in

∫
D

x ′
i1

· · · x ′
in−1

x ′
ijin (r

′, t0) d3x ′ +

[
∇n

∣∣∣∣∣∣∣∣ d

dt
P(n+1)(t0)

]
i

= −n∂i1...in

∫
D

x ′
i1

· · · x ′
in−1

(x ′
ijin − x ′

in
ji) d3x ′ − n∂i1...in

∫
D

x ′
i1

· · · x ′
in
ji d3x ′

+

[
∇n

∣∣∣∣∣∣∣∣ d

dt
P(n+1)(t0)

]
i

,

that is

a
(n)
i = −nεkiin

n + 1
∂in∂i1...in−1

∫
D

x ′
i1

· · · x ′
in−1

(r′ × j)k d3x ′ +
1

n + 1

[
∇n

∣∣∣∣∣∣∣∣ d

dt
P(n+1)(t0)

]
i

. (A.3)

We may use in equation (A.3) the definition (6) of the nth-order magnetic multipole momentum
given in [5]. So, equation (A.3) may be written as

a(n) = −∇ × (∇n−1||M(n)(t0)) +
1

n + 1
∇n

∣∣∣∣∣∣∣∣ d

dt
P(n+1)(t0).

Going back to the expansion (A.1), we may write

Ãrad(r, t) = µ0

4πr
∇ ×

∞∑
n=1

(−1)n−1

n!
∇n−1

∣∣∣∣∣∣∣∣M(n)(t0) +
µ0

4πr

∞∑
n=1

(−1)n−1

n!
∇n−1

∣∣∣∣∣∣∣∣ ∂

∂t
P(n)(t0).

Now, we extract from the last equation the terms contributing to the radiation. Because

∂i1...inf
(
t − r

c

)
= (−1)n

cn
νi1 · · · νin

dn

dtn
f

(
t − r

c

)
+ O

(
1

r

)
we have

∇ ×
[
∇n−1

∣∣∣∣∣∣∣∣M(n)
(
t − r

c

)]
= (−1)n

cn
eiεijkνj νi1 · · · νin−1

dn

dtn
Mi1...in−1k

(
t − r

c

)
+ O

(
1

r

)

= (−1)n−1

cn

[
νn−1

∣∣∣∣∣∣∣∣ dn

dtn
M(n)

(
t − r

c

)]
× ν + O

(
1

r

)

= (−1)n−1

cn
νn−1

∣∣∣∣∣∣∣∣ [dnM(n)(t − r/c)

dtn
× ν

]
+ O

(
1

r

)
obtaining, finally, the formula (4), giving the explicit contribution of each multipole to the
radiation field.
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Appendix B. Reduction of multipole tensors

We give a scheme of the reductions of multipole tensors for (µ, ε) = (4, 5):

(µ, ε) = (4, 5)

|↓
M(4)

N(3) |↓
Equation (9), n=4−−−−−−−−−→ P(3) → P(3) − 3

16c2 Ṅ(3)

M(4)

(sym)

�(2) |↓
Equation (14), n=4−−−−−−−−−→ M(2) → M(2) + 1

4c2 �̈
(2)

M(4)

M(3)

N(2) |↓
Equation (9), n=3−−−−−−−−−→ P(2) → P(2) + 2

9c2 Ṅ(2)

M(3)

(sym)

�(1) |↓
Equation (14), n=3−−−−−−−−−→ M(1) → M(1) + 1

6c2 �̈
(1)

M(3)

M(2) + 1
4c2 �̈

(2)

N(1) |↓
Equation (9), n=2−−−−−−−−−→ P(1) → P(1) + 1

4c2 Ṅ(1)

M(2)

(sym) + 1
4c2 �̈

(2)

P(5)

(3) |↓
Equation (18), n=5−−−−−−−−−→ P(3) − 3

16c2 Ṅ(3) → P(3) − 3
16c2 Ṅ(3) 3

10c2 ̈
(3)

P(5)

P(4)

(2) |↓
Equation (18), n=4−−−−−−−−−→ P(2) − 2

9c2 Ṅ(2) → P(2) − 2
9c2 Ṅ(2) + 1

4c2 ̈
(2)

P(4)

P(3) − 3
16c2 Ṅ(3) + 3

10c2 ̈
(3)

N (2) |↓
Equation (21), n=4−−−−−−−−−→ M(2) + 1

4c2 �̈
(2) → M(2) + 1

4c2 �̈
(2) + 1

24c2 N̈ (2)

P(3) − 3
16c2 Ṅ(3)

(sym) + 3
10c2 ̈

(3)

(1) |↓
Equation (18), n=3−−−−−−−−−→ P(1) − 1

4c2 Ṅ(1) → P(1) − 1
4c2 Ṅ(1) + 1

6c2 ̈
(1)

P(3) − 3
16c2

˙̃N(3) + 3
10c2

¨̃(3)
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P(2) − 2
9c2 Ṅ(2) + 1

4c2 ̈
(2)

N (1) |↓
Equation (21), n=3−−−−−−−−−→ M(1).. → M(1) + 1

6c2 �̈
(1) − 1

18c2 N̈ (1)

P(2) − 2
9c2 Ṅ(2)

sym) + 1
4c2 ̈

(2)

|↓
P(2) − 2

9c2
˙̃N(2) + 1

4c2
¨̃(2)

M(2) + 1
4c2 �̈

(2) − 1
24c2 N̈ ′(2)

N ′(1) |↓
Equation (9), n=2−−−−−−−−−→ P(1).. → P(1)− 1

4c2 Ṅ(1) + 1
6c2 ̈

(1) + 1
96c4 Ṅ′(1)

M(2) + 1
4c2

¨̃�(2) − 1
24c2 N̈ (2)

(sym)

In this scheme the following notations are used:

Nijk = 4

5

∫
D

ξiξj [ξ × (ξ × j)]k d3ξ (B.1)

�ij = 1

28
(Mqqij + Mqqji) Nik = 3

4

∫
D

ξi[ξ × (ξ × j)]k d3ξ (B.2)

�i = 1

15
Mqqi Ni = 2

3

∫
D

[ξ × (ξ × j)]i d3ξ (B.3)

ijk = 1

9
Pqqijk − 1

9 × 14

∑
D(i)

δij Pqqppk (B.4)

ij =
[

1

7
Pqqij − 1

70
δij Pqqpp

]
(B.5)

Nik = −4

5

∫
D

ξ 2ξi (ξ × j)k d3ξ Ni = −3

4

∫
D

ξ 2(ξ × j)i d3ξ

̃ij = ij − 1

3
δijkk (B.6)

�′
k = 1

15
N̈qqk = − 1

18

∫
D

ξ 4(ξ × j̈)k d3ξ (B.7)

N′
k = −4

5

∫
D

ξ 2[ξ × (ξ × j̈)]k d3ξ i = 1

5
Pqqi − 1

80c2
Ṅqqi +

3

700c2
P̈qqppi (B.8)

and

Ñijk = N((sym))ijk − 1

15

∑
D(i)

δij Nqqk

̃ijk = ijk − 1

5

∑
D(i)

δijqqk (B.9)

Ñij = 1
2 (Nij + Nji) ̃ij = ij − 1

3δijqq.
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For µ < 4 and ε < 5, the quantities N,�, . . . are obtained from the above expressions by
eliminating the contributions of the magnetic multipole tensors of ranks nm > µ and of the
electric ones for ranks ne > ε.

We point out that the reduction scheme described in this appendix is valid also in the case
of an arbitrary electromagnetic field as may be seen from [7].
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